Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Am Chem Soc ; 145(22): 12173-12180, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37235774

Despite being researched for decades, shape-shifting molecular crystals have yet to claim their spot as an actuating materials class among the primary functional materials. While the process for developing and commercializing materials can be lengthy, it inevitably starts with building an extensive knowledge base, which for molecular crystal actuators remains scattered and disjointed. Using machine learning for the first time, we identify inherent features and structure-function relationships that fundamentally impact the mechanical response of molecular crystal actuators. Our model can factor in different crystal properties in tandem and decipher their intersectional and combined effects on each actuation performance. This analysis is an open invitation to utilize interdisciplinary expertise in translating the current basic research on molecular crystal actuators into technology-based development that promotes large-scale experimentation and prototyping.

2.
Chem Soc Rev ; 52(9): 3098-3169, 2023 May 09.
Article En | MEDLINE | ID: mdl-37070570

In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.

3.
Angew Chem Int Ed Engl ; 62(9): e202217329, 2023 Feb 20.
Article En | MEDLINE | ID: mdl-36575895

One of the typical haptic elements are natural hairy structures that animals and plants rely on for feedback. Although these hair sensors are an admirable inspiration, the development of active flow sensing components having low elastic moduli and high aspect ratios remains a challenge. Here, we report a new sensing approach based on a flexible, thin and optically transmissive organic crystal of high aspect ratio, which is stamped with fluorescent dye for tracking. When subjected to gas flow and exposed to laser, the crystal bends due to exerted pressure and acts as an optical flow (hair) sensor with low detection limit (≈1.578 m s-1 ) and fast response time (≈2.70 s). The air-flow-induced crystal deformation and flow dynamics response are modelled by finite element analysis. Due to having a simple design and being lightweight and mechanically robust this prototypical crystal hair-like sensor opens prospects for a new class of sensing devices ranging from wearable electronics to aeronautics.

4.
Angew Chem Int Ed Engl ; 61(10): e202113988, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34845806

Organic crystals, although widely studied, have not been considered nascent candidate materials in engineering design. Here we summarize the mechanical properties of organic crystals that have been reported over the past three decades, and we establish a global mechanical property profile that can be used to predict and identify mechanically robust organic crystals. Being composed of light elements, organic crystals populate a narrow region in the mechanical property-density space between soft, disordered organic materials and stiff, ordered materials. Two subsets of extraordinarily stiff and hard organic crystalline materials were identified and rationalized by the normalized number density, strength, and directionality of their intermolecular interactions. We conclude that future lightweight, soft, all-organic components in devices should capitalize on the greatest asset of organic single crystals-namely, the combination of long-range structural order and softness.

5.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article En | MEDLINE | ID: mdl-33495317

Dynamic molecular crystals have recently received ample attention as an emerging class of energy-transducing materials, yet have fallen short of developing into fully realized actuators. Through the trans-cis surface isomerization of three crystalline azobenzene materials, here, we set out to extensively characterize the light-to-work energy conversion of photoinduced bending in molecular crystals. We distinguish the azobenzene single crystals from commonly used actuators through quantitative performance evaluation and specific performance indices. Bending molecular crystals have an operating range comparable to that of microactuators such as microelectromechanical systems and a work-generating capacity and dynamic performance that qualifies them to substitute micromotor drivers in mechanical positioning and microgripping tasks. Finite element modeling, applied to determine the surface photoisomerization parameters, allowed for predicting and optimizing the mechanical response of these materials. Utilizing mechanical characterization and numerical simulation tools proves essential in accelerating the introduction of dynamic molecular crystals into soft microrobotics applications.

6.
J Am Chem Soc ; 142(31): 13256-13272, 2020 08 05.
Article En | MEDLINE | ID: mdl-32559073

The anticipated shift in the focal point of interest of solid-state chemists, crystal engineers, and crystallographers from structure to properties to function parallels the need to apply our accumulated understanding of the intricacies of crystal structure to explaining the related properties, with the ultimate goal of harnessing that knowledge in applications that require soft, lightweight, or biocompatible organic solids. In these developments, the adaptive molecular crystals warrant particular attention as an alternative choice of materials for light, flexible, and environmentally benign devices, primarily memories, capacitors, sensors, and actuators. Some of the outstanding requirements for the application of these dynamic materials as high-efficiency energy-storage devices are strongly induced polarization, a high switching field, and narrow hysteresis in the case of reversible dynamic processes. However, having been studied almost exclusively by chemists, molecular crystals still lack the appropriate investigations that reliably evaluate their reproducibility, scalability, and actuating performance, and some important drawbacks have diverted the interest of engineers from these materials in applications. United under the umbrella term crystal adaptronics, the recent research efforts aim to realistically assess the appositeness of dynamic crystals for applications that require fast, reversible, and continuous operation over prolonged periods of time. With the aim of highlighting the most recent developments, this Perspective discusses their assets and pitfalls. It also provides some hints on the likely future developments that capitalize on the untapped, sequestered potential of this distinct materials class for applications.

7.
Adv Mater ; 32(20): e1906216, 2020 May.
Article En | MEDLINE | ID: mdl-31930601

Crystal adaptronics is an emergent materials science discipline at the intersection of solid-state chemistry and mechanical engineering that explores the dynamic nature of mechanically reconfigurable, motile, and explosive crystals. Adaptive molecular crystals bring to materials science a qualitatively new set of properties that associate long-range structural order with softness and mechanical compliance. However, the full potential of this class of materials remains underexplored and they have not been considered as materials of choice in an engineer's toolbox. A set of general performance metrics that can be used for quantification of the performance of these prospective dynamic materials as micro- and macroactuators is presented. The indices are calculated on two selected representatives of thermosalient solids-materials that undergo rapid martensitic transitions accompanied with macroscopic locomotion. Benchmarking of their performance against extensive set of data for the existing actuator classes and visualization using materials property charts uncover the hidden potential and advantages of dynamic crystals, while they also reveal their drawbacks for actual application as actuators. Altogether the results indicate that, if the challenges with fabrication and implementation in devices are overcome, adaptive molecular crystals can have far-reaching implications for emerging fields such as smart microelectronics and soft microrobotics.

...